
IceCube Software

Last Modified: October 24
The Software Design
Description of DAQ

Chuck McParland
, 2002 3:30 pm
 Version:0.0



Draft Introduction
1.0 Introduction

1.1 Purpose

The purpose of this document is to provide an overall description of the IceCube data
acquisition system. This document should serve as a general introduction to the major
data acquisition system components, their behavioral relationship to each other, and
their relationship to other IceCube software subsystems. Detailed descriptions of these
system components will be found in subsequent documents.

1.2 Scope

As noted above, this document will focus on the major software components of the
IceCube data acquisition system. In addition to interacting with each other, these com-
ponents also interact with design entities outside the scope of this document. These
entities (e.g. "logging services") will be described in other documents.

1.3 References

IceCube Preliminary Design Document

Software Requirements Specification for IceCube System Software

DAQ System Requirements Document

2.0 Background

2.1 Need for Robustness

By its very nature, the IceCube experiment requires a data acquisition system that is
capable of dealing with a large number of independent sensors operating autonomously
in a remove environment. The experiment will deploy 4860 optical modules organized
into 81 strings over a period of 5 to 6 years at a location justifiably described as "at the
end of the earth." Once operating, it will produce approximately 12 Gbytes of data daily
and close to 4 Tbytes of data per year. Data will be transferred daily via satellite con-
nection to the northern hemisphere where archiving and final analysis will occur. For 9
months out of the year, during the winter season, the system will have only minimal
local support and many operations will be remotely initiated and monitored via satellite
link. Furthermore, the entire activity is expected to continue for at least 10 years after
deployment. If ever there were a "poster project" for robust, reliable system design,
IceCube would be an excellent candidate.

2.2 Performance

Data rates flowing from individual DOMs within the detector array are relatively mod-
est. However, when aggregated into an array of roughly 5000 contributing data sources,
they create significant network demands for both in terms of raw data transport band-
width and data messaging traffic. The system design addresses these requirements
through two mechanisms. First, the system is organized as a hierarchy consisting of
Page 2



Background
groups of DOMs that share a common deployment infrastructure-the deployment string.
Thus, the data acquisition system sees the detector as a collection of logical strings each
of which contains a set of individual DOMs. This hierarchical organization is mirrored
in the physical arrangement of both hardware and software components. As a result, the
primary data path taken by individual DOM "hits" as they are combined into IceCube
events is well understood and the system design can be optimized to accommodate it.

However, in addition to this primary data path, the data acquisition system must also
gather hit information from all DOMs into a single process in order to make event trig-
ger decisions based on detector-wide response. This necessitates message traffic
between software components that does not follow the same hierarchical data paths
used by the bulk data flow. This traffic pattern is accommodated by the use of efficient,
switched data path networking fabrics that allow direct connection of all DOM strings
to both the event builder and global trigger software components. These commercial
network switches allow us to effectively distribute data acquisition system software
components across multiple CPUs in a processor farm.

2.3 Incremental Deployment Schedule

As noted earlier, the full detector array will take a number of years to fully deploy. Fur-
thermore, actual deployment activities will only take place during the 3+ months of the
austral summer season. As a result, large, but incomplete, portions of the detector will
be available for use several years prior to the completion of the detector. IceCube detec-
tor operations expect continuous data acquisition from all detector elements from the
time of their deployment. Therefore, the data acquisition system design must, from the
very beginning, accommodate periodic deployment of new detector elements and oper-
ation of an incomplete detector. It must also be able to integrate new detector elements
with a minimum amount of downtime. The ability to scale system software, computing
hardware and network infrastructure as new detector elements are added is a clear
requirement for both the software design and the hardware installation on which it runs.

2.4 Use of generic hardware and software platforms

These system characteristics have lead us to a data acquisition system design that relies
heavily on generic computing platforms and commercial networking infrastructure.
While both the DOM and its specialized surface communications interface are clearly
unique to the IceCube experiment, the design of the remaining software system ele-
ments depends only on the availability of generic computing platforms and networking
capabilities. During implementation, software components can be aggregated onto sin-
gle processors or distributed across multiple CPUs depending on performance require-
ments. Although we anticipate using identical CPUs as processor farm building blocks,
the design allows some functions to be assigned to high performance processors as
needed without major changes to the underlying system architecture or implementation.
While some efficiencies of size or power might be achieved by denser system packag-
ing (e.g. Compact PCI) or faster interprocessor message passing performance (e.g.
VME backplane or Myranet), implementations using these solutions would tightly cou-
ple the hardware and software and bind it to a particular hardware platform. Therefore,
in the following design description, there will be little discussion of specific processor
or networking platforms.
Page 3



Draft Decomposition View
3.0 Decomposition View

The IceCube DAQ is divided into the following design entities (see figure 1):

FIGURE 1.

3.1 DOM MB Application

ID: DOM MB Application

Type: Subsystem

Purpose: The DOM MB application is the DOM-resident software that configures and
controls all data taking behavior internal to each DOM. It is responsible for acquiring
data produced by digitizing PMT output waveforms and communicating them, on
demand, to the DOM Hub subsystem.

Function: DOM MB Application provides:

• Control of all DOM-resident, software controllable hardware functions.

• Transfer, storage and execution control of all software programs to be executed on
the DOM MB.

• Transfer, storage and loading of all programable firmware used within the DOM MB
programable logic.
Page 4



Decomposition View
• Control of DOM-resident waveform digitization, compression and data buffering
functions.

• Control communications and transport of acquired data to surface subsystem (i.e.
DOM Hub).

Subordinates: none

3.2 DAQ Control

ID: DAQ Control

Type: Subsystem

Purpose: DAQ Control provides a single control view of all DAQ components. As
such, it provides a single API through which higher software and operator levels can
determine the overall state of the DAQ system and command that system to move to one
of a small set of known operational states.

Function: DAQ Control provides

• Single access point of control and monitoring of overall DAQ state and operation.

• Control and sequencing of all individual DAQ components to achieve overall opera-
tional state.

• Periodic monitoring of individual DAQ components to assure their proper state.

• Automated DAQ-wide response to detected error conditions.

Subordinates:

• DOM MB Application

• DOM Hub

• String Processor

• Global Trigger

• Event Builder

• Configuration Database

• Logging Service

• Online Data Logging Interface

3.3 DOM Hub

ID: DOM Hub

Type: Subsystem

Purpose: The DOM Hub is the sole electrical attachment point for all deployed
IceCube DOMs. As such it must provide power to all DOMs and control and mediate
all communications between DAQ subsystems and individual DOMs. Since DOM
timebase calibrations, which are performed on a continual periodic basis, must be care-
fully co-ordinated with all surface to DOM communications, the DOM Hub is also
responsible for managing and performing these calibration activities. In addition, the
Page 5



Draft Decomposition View
DOM Hub is responsible for continually querying all attached and operational DOMs
for any data contained in their data buffers.

Function: The DOM Hub provides

• Communications nexus for all DOMs attached to a given hub.

• Management of power and operational state for all attached DOMs. This includes
control of boot sequences to achieve execution of test programs as well as the DOM
MB application.

• Control nexus for all requests to change either DOM operational state or configura-
tion (i.e. "slow control").

• Continuous data collection from all attached and operational DOMs.

• Periodic time calibration of DOM MB time base with respect to internal DOM Hub
time base and UTC time.

• Data forwarding service that forwards data collected from each operational DOM to
the appropriate String Processor.

• Forwarding, to the appropriate String Processor, of periodic time base calibrations
performed on each DOM.

• Forwarding, to the appropriate String Processor, of periodic DOM configuration
descriptions obtained for each operational DOM.

• Collect subsystem specific performance monitoring information and periodically
present such information to the logging service.

Subordinates: DOM MB Application

3.4 String Processor

ID: String Processor

Type: Subsystem

Purpose: The string processor is the first subsystem within the data flow from DOM to
storage that has immediate access to data from all operational DOMs on a particular
detector string for a known time interval. By use of periodic time calibration data col-
lected by the DOM Hub, it is responsible for normalization of individual time tags pre-
sented by each DOM into a UTC time representation. Once normalized to UTC, the
string processor is responsible for locating significant clusters of PMT signals in both
the time and string location dimension and presenting a synopsis of those hits to the glo-
bal trigger subsystem. When asynchronously directed by the global trigger to forward
DOM data for a given time interval, it gathers data for that interval from all contribution
DOMs and forwards it to the event builder for subsequent processing and recording.

Function: String Processor functions

• Data buffering of all DOM data for an entire string for extended periods-up to 30sec.

• Application of individual time calibrations to each operational DOM data stream to
create correct UTC time stamp for each data element.

• Periodic extraction of time-ordered, string-local PMT hits into a per string trigger
synopsis record.
Page 6



Decomposition View
• Forwarding of each trigger synopsis record produced to the global trigger sub-
system.

• When requested by the global trigger subsystem, forward all string-local data within
a specified UTC time interval to the event builder subsystem.

• Collect subsystem specific performance monitoring information and periodically
present such information to the logging service.

Subordinates: none

3.5 Global Trigger

ID: Global Trigger

Type: Subsystem

Purpose: The global trigger is primarily responsible for locating detector-wide hit pat-
terns that represent possibly interesting events suitable for further filtering. It takes as
its raw material, the trigger synopsis data for a particular time interval provided by all
string processors active within the current configuration. These trigger synopses are
examined with regard to several event criteria. When any of these event criteria are
met, a suitable UTC time interval is calculated to cover all data involved in selected
event(s). This interval is sent to all active string processors and to the event builder.
Subsequent event processing is performed by those subsystems.

Function: Global Trigger provides

• Collect trigger synopsis records from all active string processors.

• Once all trigger synopsis contributions for a given time interval have been collected,
search for detector-wide events that meet one or more set of criteria.

• Once an event has been found, communicate TUTC time interval of interest to all
active string processors.

• Notify event builder of pending event to be received, built and recorded.

• Collect subsystem specific performance monitoring information and periodically
present such information to the logging service.

Subordinates: none

3.6 Event Builder

ID: Event Builder

Type: Subsystem

Purpose: .The event builder is dedicated to collecting contributions for a given event
from all active string processors, create a single, properly formatted data structure to
represent that data and pass it to the on-line data logging interface. The event builder
performs these functions with no regard to content and acts solely at the direction of the
global trigger.

Function: Event Builder provides
Page 7



Draft Dependency View
• Receive requests to build events from the global trigger.

• Receive and synchronize event contributions from all active string processors.

• Collate and reformat individual string processor contributions into a single event
data structure.

• Pass built events to the online data logging interface.

• Collect subsystem specific performance monitoring information and periodically
present such information to the logging service.

Subordinates: none

4.0 Dependency View

4.1 DOM MB Application

ID: DOM MB Application

Type: Subsystem

Dependencies:

• none

Resources:

• DOM MB and associated hardware (PMT, HV supply, etc.)

4.2 DAQ Control

ID: DAQ Control

Type: Subsystem

Dependencies:

• Configuration Database

• Logging Service

• Monitoring Service

Resources:

• Designated processor within DAQ processor farm

• DAQ processor farm network infrastructure

4.3 DOM Hub

ID: DOM Hub

Type: Subsystem

Dependencies:
Page 8



Dependency View
• DOM MB Application

• Configuration Database

• Logging Service

• Monitoring Service

Resources:

• Attached DOMs

• IceCube designed DOM Communications Interface (DCI) cards.

• DAQ Control

• Designated processor within DAQ processor farm

• DAQ processor farm network infrastructure

4.4 String Processor

ID: String Processor

Type: Subsystem

Dependencies:

• DOM Hub

• DAQ Control

• Configuration Database

• Logging Service

• Monitoring Service

Resources:

• Designated processor within DAQ processor farm

• DAQ processor farm network infrastructure

4.5 Global Trigger

ID: Global Trigger

Type: Software Component

Type: Subsystem

Dependencies:

• String Processor

• Event Builder

• DAQ Control

• Configuration Database

• Logging Service
Page 9



Draft Interface View
• Monitoring Service

Resources:

• Designated processor within DAQ processor farm

• DAQ processor farm network infrastructure

4.6 Event Builder

ID: Event Builder

Type: Subsystem

Dependencies:

• String Processor

• Global Trigger

• DAQ Control

• Online Data Logging Interface

• Configuration Database

• Logging Service

• Monitoring Service

Resources:

• Designated processor within DAQ processor farm

• DAQ processor farm network infrastructure

5.0 Interface View

Detailed interface views will appear in subsequent documents that focus on individual
software components (e.g. DOM Hub).

6.0 Details View

To be completed
Page 10


	1.0 Introduction
	2.0 Background
	3.0 Decomposition View
	4.0 Dependency View
	5.0 Interface View
	6.0 Details View

